
TRAIN: A Trustless and Permissionless Intent-Based
Bridging Protocol

Layerswap Labs, Inc.

March 2025

Abstract

In this paper, we introduce TRAIN (TRustless Atomic INtents), a trustless and permis-
sionless bridging protocol designed to scale securely across an unlimited number of blockchains.
TRAIN achieves this with PreHTLC, an advanced version of HTLC optimized for intent-based
cross-chain bridging, featuring Local Verification and a Reward/Slash mechanism.

1 Fundamentals of Atomic Swaps

Atomic swaps rely on two core mechanisms to ensure trustless and secure asset transfers across
different blockchains:

Hashlock. A hashlock is a cryptographic feature in a smart contract where funds are locked
using the hash of a secret value. To unlock the funds, the hash preimage (the original secret value)
must be revealed. This ensures that only the holder of the correct secret can unlock the funds,
thereby guaranteeing secure operation.

Timelock. A timelock is a condition in a smart contract that specifies a fixed time frame within
which a particular action must be completed. For example, in an atomic swap, if the party meant to
claim the funds fails to do so within the allotted time, the contract treats the action as canceled and
returns the locked assets to their original owner. This prevents assets from becoming indefinitely
locked and provides a failsafe in case one party becomes unresponsive.

2 Classic Atomic Swaps with HTLC

Hashed timelock Contracts (HTLCs) enable peer-to-peer asset exchanges between different blockchains
without direct interoperability. The general process is as follows:

1



TRAIN Protocol March 2025

Figure 1: HTLC Sequence Flow

1. Party 1 Lock:

• Party 1 generates a secret S.

• Computes the hashlock = HASH(S).

• Creates an HTLC with a timelock to lock funds for Party 2 on the source chain.

2. Party 2 Lock:

• Party 2 detects Party 1’s HTLC.

• Party 2 locks funds with timelock for Party 1 on the destination chain using the same
hashlock.

3. Party 1 Unlock:

• Party 1 detects Party 2’s HTLC.

• Party 1 claims funds on the destination chain by revealing S.

4. Party 2 Unlock:

• Party 2 detects S on-chain.

• Uses S to claim funds on the source chain.

Despite the inherent security of HTLCs, they face three main practical limitations:

2



TRAIN Protocol March 2025

• Secret Management: Party 1 must secure and manage the secret S until Party 2 commits.

• Claim Transaction Fees: Party 1 may not have funds on the destination chain to pay
transaction fees for claiming assets.

• Liveness Issues: If Party 2 fails to act, the swap stalls; no other entity can step in to
complete the transaction.

3 Atomic Swaps with PreHTLC

To address these limitations, we propose PreHTLC, which extends the traditional HTLC model. In
the PreHTLC model, we assume the exchange takes place between the User and the Solver. The
User submits their intent with PreHTLC (without a hashlock), and the Solver is responsible for
managing the secret and releasing the funds.

Figure 2: PreHTLC Sequence Flow

1. User Commit:

• The User creates a PreHTLC, committing funds to a chosen Solver (or a set of Solvers)
on the source chain.

• This commitment has no hashlock, only a timelock.

3



TRAIN Protocol March 2025

2. Solver Lock:

• The Solver detects this PreHTLC.
• The Solver generates a random secret S.
• Computes the hashlock = HASH(S).
• Locks funds (minus the Solver fee) for the User on the destination chain.

3. User AddLock:

• The User observes the Solver’s transaction on the destination chain.
• Retrieves the hashlock.
• Converts their PreHTLC into a standard HTLC (using the hashlock) on the source chain

and confirms the final Solver if multiple Solvers were specified during the commitment.

4. Unlocks:

• The Solver releases the User’s funds on the destination chain by revealing S.
• The Solver then claims its funds on the source chain using S.

The Liveness Issue. PreHTLCs significantly reduce liveness issues by:

• Delegating secret management to the Solver makes the entire transaction flow fully recoverable
from on-chain data for the User.

• Allowing Users to commit to multiple Solvers instead of a single party that may become
inactive, enabling any Solver to step in if needed.

However, the User must still be online long enough to transmit the hashlock from the destination
network back to the source network.

Delegating Secret Management. Delegating secret management to the Solver does not
introduce additional trust assumptions. When the Solver reveals the secret to claim funds on the
source network, the secret becomes public. As a result, any party can use it to unlock the User’s
funds on the destination network. To incentivize the release of User funds, the protocol reserves a
portion of the total bridging fee as a reward for performing this task.

3.1 Local Verification

During Step 3, the dApp must verify the Solver’s transaction on the destination chain. This
verification can be done in two ways:

• Light Client (e.g., Helios): If available, the dApp directly validates the transaction via the
light client.

• Multiple RPC Endpoints: If a light client is unavailable, the dApp queries multiple RPC
providers or a user-specified node. After confirming the state’s integrity, it retrieves the
hashlock.

4



TRAIN Protocol March 2025

Security Considerations

Security relies on retrieving the correct hashlock from the destination chain. The worst-case
scenario occurs when all of the following are true simultaneously:

• No light client is available for the destination chain.

• Only a single RPC provider is accessible.

• This single RPC provider is operated by the same Solver.

Wallets, dApps, and users have the freedom to verify the hashlock however they choose. The
protocol does not enforce any specific verification method. In the worst-case scenario, where a user
has to manually verify the state, the trustless nature of the exchange is still preserved. If the user is
not convinced, they do not have to confirm the swap—they can simply cancel it.

3.2 Reward/Slash Mechanism

In PreHTLC-based atomic swaps, the Solver is responsible for handling the User’s claim transaction.
However, a lazy Solver might neglect to release the User’s funds even after unlocking their assets.
To prevent this:

• The Solver locks an additional reward amount when committing funds to the User.

• If the Solver successfully completes the User’s transfer, that reward is returned to the Solver.

• If the Solver fails to act, any party (including the User) can step in, release the User’s funds,
and claim the Solver’s reward as compensation.

This approach creates a strong economic incentive for Solvers to remain diligent and active.

3.3 Multi-hop Transactions

TRAIN allows the same hashlock to be reused across multiple networks and Solvers within a
single bridging operation. Once S is revealed, all linked HTLCs in all networks can be unlocked.

Example The User wants to move assets from Chain A to Chain C, but there is no single Solver
covering both chains. Two Solvers are available: Solver(AB) (Chain A–B) and Solver(BC) (Chain
B–C).

1. User Commit: User locks assets in a PreHTLC with Solver(AB) on Chain A.

2. Solver(AB) Commit: Solver(AB) locks assets in a PreHTLC for Solver(BC) on Chain B.

3. Solver(BC) Lock: Solver(BC) locks funds for the User on Chain C (standard HTLC).

4. User, Solver(AB) AddLock:

• The User detects the final lock on Chain C, retrieves the hashlock, and upgrades the
PreHTLC on Chain A to a full HTLC.

5



TRAIN Protocol March 2025

• Solver(AB) upgrades the PreHTLC on Chain B to an HTLC.

5. Unlocks:

• Solver(BC) reveals S on Chain C to release funds to the User.
• Solver(BC) then claims its funds on Chain B.
• Solver(AB) claims its funds on Chain A.

This procedure generalizes to any number of hops. Regardless of the hop count, the User
needs only two source-chain transactions. In most cases, two Solvers will be sufficient, as popular
networks (e.g., Ethereum) can act as an intermediate hub.

4 Security

TRAIN enforces strict security properties to ensure trustless, permissionless, and verifiable cross-
chain transfers:

• Homogeneous Security: Cryptographic security remains uniform for all permissionless
participants, even as new networks or Solvers join.

• Battle-Tested Foundation: TRAIN’s core (atomic swaps with HTLC) has been successfully
deployed in the Lightning Network and other production environments.

• No Centralized Pools: The protocol avoids large contract-held asset pools, significantly
reducing the incentives for attacks.

• Immutable Contracts: Contracts are immutable, mitigating upgrade-related risks and
preserving stability over time.

• Simplicity: PreHTLC contracts are streamlined (typically around 200 lines of code), reducing
potential vulnerabilities.

5 Scalability

TRAIN’s permissionless design allows any blockchain to be added without centralized coordination.
The typical steps:

1. Contract Implementation: Implement PreHTLC standards on the target network.

2. Solver Agent Implementation: If no existing implementation is available (e.g., a generic
EVM library), create a Solver Agent Chain Library for the new network to interact with
PreHTLC contracts.

3. Run a Solver: Operate a Solver that bridges the new chain with at least one widely
connected chain.

4. dApp Implementation: If needed, develop a Client Chain Library that manages wallet
interactions and event subscriptions.

6



TRAIN Protocol March 2025

5. dApp Deployment: Add the new network to an existing popular bridge UI, or fork/build
your own.

Once these steps are completed, users can transfer assets to and from the newly added network
without gatekeepers.

6 Conclusion

By integrating an intent/Solver-based framework with PreHTLCs and local verification, the TRAIN
protocol achieves:

• Near-Immediate Settlement: Approximately 30-second completion time for cross-chain
transfers, approximated as 2 × src_block_time + 2 × dst_block_time.

• Full Control: Users maintain total custody of their assets; neither they nor the Solvers rely
on external actors.

• Seamless Onboarding: Any new blockchain network can be integrated permissionlessly,
without requiring approval from any party.

This model provides a highly scalable, trustless framework for cross-chain asset transfers,
eliminating the need for third-party security mechanisms.

References

1. Alt chains and atomic transfers, Bitcoin Forum. Available at: https://bitcointalk.org/in
dex.php?topic=193281.0

2. Hashed Timelock Contracts, Bitcoin Wiki. Available at: https://bitcoinwiki.org/wiki/h
ashed-timelock-contracts

3. PreHTLC Atomic Swaps, EF L2 Interop Repo. Available at: https://github.com/ethereu
m/L2-interop/blob/main/docs/intents/atomic-swaps.md

4. PreHTLC Contracts Implementation, TRAIN Repo. Available at: https://github.com/Tra
inProtocol/contracts

5. Solver Implementation, TRAIN Repo. Available at: https://github.com/TrainProtocol/s
olver

6. dApp Implementation, TRAIN Repo. Available at: https://github.com/TrainProtocol/a
pp

7

https://bitcointalk.org/index.php?topic=193281.0
https://bitcointalk.org/index.php?topic=193281.0
https://bitcoinwiki.org/wiki/hashed-timelock-contracts
https://bitcoinwiki.org/wiki/hashed-timelock-contracts
https://github.com/ethereum/L2-interop/blob/main/docs/intents/atomic-swaps.md
https://github.com/ethereum/L2-interop/blob/main/docs/intents/atomic-swaps.md
https://github.com/TrainProtocol/contracts
https://github.com/TrainProtocol/contracts
https://github.com/TrainProtocol/solver
https://github.com/TrainProtocol/solver
https://github.com/TrainProtocol/app
https://github.com/TrainProtocol/app

	Fundamentals of Atomic Swaps
	Classic Atomic Swaps with HTLC
	Atomic Swaps with PreHTLC
	Local Verification
	Reward/Slash Mechanism
	Multi-hop Transactions

	Security
	Scalability
	Conclusion

